
Do we really understand SQL?

Leonid Libkin
University of Edinburgh

Joint work with Paolo Guagliardo, also from Edinburgh

Basic questions

• We are taught that the core of SQL is essentially
syntax for relational calculus (first-order logic). Is it
true?

• We are taught that core SQL can be translated into
relational algebra. Is it true?

• We are taught that SQL needs 3-valued logic to
deal with missing information (nulls). Is it true?

Motivation

• Why even ask such questions? It’s the stuff from
the 1980s (or earlier). It’s all in database textbooks
and taught in all database courses.

• This is exactly what we thought until we got into
some specific problems related to real-life SQL

• So we start with a bit of history

Old days (before 1969)
Various ad-hoc
database modes:

•network
•hierarchical

writing queries: a
very elaborate task

All changed in 1969: Codd’s relational model;
now dominates the world

Relational Model
ORDER_ID TITLE PRICE

Ord1 “Big Data” 30

Ord2 “SQL” 35
Ord3 “Logic” 50

CUST_ID ORDER

c1 Ord1

c2 Ord2

CUST_ID NAME

c1 John

c2 Mary

Orders Pay Customer

Relational Model
ORDER_ID TITLE PRICE

Ord1 “Big Data” 30

Ord2 “SQL” 35
Ord3 “Logic” 50

CUST_ID ORDER

c1 Ord1

c2 Ord2

CUST_ID NAME

c1 John

c2 Mary

Language: Relational Algebra (RA)

•projection 𝛑 (find book titles)

•selection 𝛔 (find books that cost at least £40)

•Cartesian product ×

•union ∪
•difference -

Orders Pay Customer

Queries
Find ids of customers who buy all books:
𝛑cust_id (Pay) -
 𝛑cust_id ((𝛑 cust_id(Pay) × 𝛑title(Order)) -
 𝛑cust_id,title (𝛔order_id=order (Order × Pay)))

Queries
Find ids of customers who buy all books:
𝛑cust_id (Pay) -
 𝛑cust_id ((𝛑 cust_id(Pay) × 𝛑title(Order)) -
 𝛑cust_id,title (𝛔order_id=order (Order × Pay)))
That’s not pretty. But here is a better idea (1971):

express queries in logic

Queries
Find ids of customers who buy all books:
𝛑cust_id (Pay) -
 𝛑cust_id ((𝛑 cust_id(Pay) × 𝛑title(Order)) -
 𝛑cust_id,title (𝛔order_id=order (Order × Pay)))
That’s not pretty. But here is a better idea (1971):

express queries in logic

{c | ∀(o,t,p) ∊ Order ∃ (o’,t,p’) ∊ Order: (c,o’) ∊ Pay}

Queries
Find ids of customers who buy all books:
𝛑cust_id (Pay) -
 𝛑cust_id ((𝛑 cust_id(Pay) × 𝛑title(Order)) -
 𝛑cust_id,title (𝛔order_id=order (Order × Pay)))
That’s not pretty. But here is a better idea (1971):

express queries in logic

{c | ∀(o,t,p) ∊ Order ∃ (o’,t,p’) ∊ Order: (c,o’) ∊ Pay}

This is first-order logic (FO).
Codd 1971: RA = FO.

History continued
Of course programmers don’t write logical sentences, they

need a programming syntax. Enters SQL:

SELECT P.cust_id FROM P
WHERE NOT EXISTS
 (SELECT * FROM Order O
 WHERE NOT EXISTS
 (SELECT * FROM Order O1
 WHERE O1.title=O.title AND O1.order_id=P.order))

History continued
Of course programmers don’t write logical sentences, they

need a programming syntax. Enters SQL:

SELECT P.cust_id FROM P
WHERE NOT EXISTS
 (SELECT * FROM Order O
 WHERE NOT EXISTS
 (SELECT * FROM Order O1
 WHERE O1.title=O.title AND O1.order_id=P.order))

∀xF(x) = ¬∃x ¬F(x)

History continued
Of course programmers don’t write logical sentences, they

need a programming syntax. Enters SQL:

SELECT P.cust_id FROM P
WHERE NOT EXISTS
 (SELECT * FROM Order O
 WHERE NOT EXISTS
 (SELECT * FROM Order O1
 WHERE O1.title=O.title AND O1.order_id=P.order))

Idea:
• Take FO and turn into into programming syntax.
• Then use RA to implement queries.

∀xF(x) = ¬∃x ¬F(x)

SQL development
• SQL has since become the dominant language for

relational databases

• Standards: SQL-86, SQL-89, SQL-92, SQL:1999,
SQL:2003, SQL:2008, SQL:2011, SQL:2016

• The latest standard is in 9 parts, will make you
$1000 poorer if you buy them all.

• But the core remains the same, essentially FO.

• And it is the main big data tool!

Data scientists’ favorite tools

0%

10%

20%

30%

40%

50%

60%

70%

Co
uc

hb
as

e
G

o
G

ra
ph

La
b

O
ra

cl
e

Ex
as

ca
le

As
te

r D
at

a
(T

er
ad

at
a)

O
ra

cl
e

BI
Am

az
on

 D
yn

am
oD

B
IB

M
Vo

w
pa

l W
ab

bi
t

EM
C/

G
re

en
pl

um
KN

IM
E

Sp
ot
fir

e
M

ah
ou

t
N

eo
4J

M
at

he
m

at
ic

a
St

at
a

St
or

m
Ve

rt
ic

a
M

ic
ro

st
ra

te
gy

Pe
nt

ah
o

Q
lik

Vi
ew

Co
gn

os
LI

BS
VM

M
ap

R
Ru

by
N

et
ez

za
 (I

BM
)

Sp
lu

nk
G

oo
gl

e
Bi

gQ
ue

ry
/F

us
io

n
Ta

bl
es

Ra
pi

dM
in

er
SA

P
H

AN
A

Bu
si

ne
ss

O
bj

ec
ts

IB
M

 D
B2

G
oo

gl
e

Im
ag

e
Ch

ar
ts

 A
PI

M
at

la
b

Re
di

s
G

oo
gl

e
Ch

ar
t T

oo
ls

 /
Im

ag
e

AP
I

C#
H

or
to

nw
or

ks
Ca

ss
an

dr
a

Te
ra

da
ta

SP
SSPe

rl
Am

az
on

 E
la

st
ic

 M
ap

Re
du

ce
 (E

M
R)

H
ba

se
W

ek
a

Am
az

on
 R

ed
Sh

iftPi
gC

SQ
Li

te
Sc

al
a

Po
w

er
Pi

vo
t

C+
+

SA
S

Ap
ac

he
 H

ad
oo

p
M

on
go

D
B

Vi
su

al
 B

as
ic

/V
BA

Cl
ou

de
ra

Sp
ar

k
H

iv
e

H
om

eg
ro

w
n

an
al

ys
is

 to
ol

s
D

3
O

ra
cl

e
Po

st
gr

eS
Q

L
Ja

va
M

at
pl

ot
lib

 (P
yt

ho
n)

Ja
va

Sc
rip

t
Ta

bl
ea

u
M

ic
ro

so
ft

 S
Q

L
Se

rv
er

gg
pl

ot
Py

th
on

: n
um

py
, s

ci
py

, s
ci

ki
t-

le
ar

n
M

yS
Q

LR
Py

th
on

Ex
ce

l
SQ

L

TOOLS
LANGUAGES, DATA PLATFORMS, ANALYTICS

Sh
ar

e
of

 R
es

po
nd

en
ts

Tool: language, data platform, analytics Tool: language, data platform, analytics

Future data scientists’ favorite tools

But do we understand it?

• Even the basic fragment, that stays the same in all
the Standards:

• does it have the power of RA? Does it have the
power of FO?

• Is there a formal semantics of it?

• Let’s do a little quiz and see how well we know
the basics.

TASK: Relations R(A), S(A)
Compute R - S.

select R.A from R where R.A not in (select S.A from S)

Every student will write:

TASK: Relations R(A), S(A)
Compute R - S.

And they are taught it is equivalent to :

select R.A from R
where not exists (select S.A from S where S.A=R.A)

select R.A from R where R.A not in (select S.A from S)

Every student will write:

TASK: Relations R(A), S(A)
Compute R - S.

And they are taught it is equivalent to :

select R.A from R
where not exists (select S.A from S where S.A=R.A)

select R.A from R where R.A not in (select S.A from S)

Every student will write:

and that they can do it directly in SQL:

select * from r except select * from s

TASK: Relations R(A), S(A)
Compute R - S.

And they are taught it is equivalent to :

select R.A from R
where not exists (select S.A from S where S.A=R.A)

select R.A from R where R.A not in (select S.A from S)

Every student will write:

and that they can do it directly in SQL:

select * from r except select * from s

A

1
null

A

null

R S
TASK: Relations R(A), S(A)
Compute R - S.

And they are taught it is equivalent to :

select R.A from R
where not exists (select S.A from S where S.A=R.A)

select R.A from R where R.A not in (select S.A from S)

Every student will write:

and that they can do it directly in SQL:

select * from r except select * from s

A

1
null

A

null

R S
TASK: Relations R(A), S(A)
Compute R - S.

Outputs:

And they are taught it is equivalent to :

select R.A from R
where not exists (select S.A from S where S.A=R.A)

select R.A from R where R.A not in (select S.A from S)

Every student will write:

and that they can do it directly in SQL:

select * from r except select * from s

A

1
null

A

null

R S
TASK: Relations R(A), S(A)
Compute R - S.

A

Outputs:

And they are taught it is equivalent to :

select R.A from R
where not exists (select S.A from S where S.A=R.A)

select R.A from R where R.A not in (select S.A from S)

Every student will write:

and that they can do it directly in SQL:

select * from r except select * from s

A

1
null

A

null

R S
TASK: Relations R(A), S(A)
Compute R - S.

A

A

1
null

Outputs:

And they are taught it is equivalent to :

select R.A from R
where not exists (select S.A from S where S.A=R.A)

select R.A from R where R.A not in (select S.A from S)

Every student will write:

and that they can do it directly in SQL:

select * from r except select * from s

A

1
null

A

null

R S
TASK: Relations R(A), S(A)
Compute R - S.

A

A

1
null

A

1

Outputs:

An exam question that nicely
brings down the average grade

What is the output of these queries?

SELECT 1 FROM S
WHERE (null = ((null =
 ((null = ((null = null) is null))
 is null)) is null)) is null

SELECT 1 FROM S
WHERE (null = ((null =
 ((null = ((null = null) is null))
 is null)) is null))

An exam question that nicely
brings down the average grade

What is the output of these queries?

SELECT 1 FROM S
WHERE (null = ((null =
 ((null = ((null = null) is null))
 is null)) is null)) is null

SELECT 1 FROM S
WHERE (null = ((null =
 ((null = ((null = null) is null))
 is null)) is null))

1

∅

SQL vs Relational Algebra: attributes may
repeat

Q = SELECT R.A, R.A FROM R
A A

1 1

null null
giveson

A

1

null

SQL vs Relational Algebra: attributes may
repeat

Q = SELECT R.A, R.A FROM R
A A

1 1

null null
gives

Q’ = SELECT * FROM (Q) AS T
Let’s use it as a subquery:

on
A

1

null

SQL vs Relational Algebra: attributes may
repeat

Q = SELECT R.A, R.A FROM R
A A

1 1

null null
gives

Q’ = SELECT * FROM (Q) AS T
Let’s use it as a subquery:

Output:
• Postgres: as above
• Oracle, MS SQL Server: compile-time error

on
A

1

null

SQL vs Relational Algebra: attributes may
repeat

SELECT R.A FROM R WHERE EXISTS (Q’)

Q = SELECT R.A, R.A FROM R
A A

1 1

null null
gives

Q’ = SELECT * FROM (Q) AS T
Let’s use it as a subquery:

Output:
• Postgres: as above
• Oracle, MS SQL Server: compile-time error

on
A

1

null

SQL vs Relational Algebra: attributes may
repeat

SELECT R.A FROM R WHERE EXISTS (Q’)

Q = SELECT R.A, R.A FROM R
A A

1 1

null null
gives

Q’ = SELECT * FROM (Q) AS T
Let’s use it as a subquery:

Output:
• Postgres: as above
• Oracle, MS SQL Server: compile-time error

Answer:
A

1
null

on
A

1

null

Why do we find these
questions difficult?

• Reason 1: there is no formal semantics of SQL.

• The Standard is rather vague, not written formally, and
different vendors interpret it differently.

• Reason 2: theory works with a simplified model, no nulls,
no duplicates.

• Under these assumptions several semantics exist
(1985 - 2017) but they do not model the real language.

It is much harder to deal with the real thing than with
theoretical abstractions

It is much harder to deal with the real thing than with
theoretical abstractions

Another example: Query equivalences

Q1(x) :- T(x,y)
Q2(x) :- T(x,y), T(u,v)

Another example: Query equivalences

Q1(x) :- T(x,y)
Q2(x) :- T(x,y), T(u,v)

In theory:
equivalent; on

A

1
3

A B

1 2
3 4

return

Another example: Query equivalences

Q1(x) :- T(x,y)
Q2(x) :- T(x,y), T(u,v)

Now the same in SQL:

In theory:
equivalent; on

A

1
3

A B

1 2
3 4

return

Another example: Query equivalences

Q1(x) :- T(x,y)
Q2(x) :- T(x,y), T(u,v)

Now the same in SQL:

A

1
3

Q1 = SELECT R.A FROM R returns

In theory:
equivalent; on

A

1
3

A B

1 2
3 4

return

Another example: Query equivalences

Q1(x) :- T(x,y)
Q2(x) :- T(x,y), T(u,v)

Now the same in SQL:

A

1
3

Q1 = SELECT R.A FROM R returns

Q2 = SELECT R1.A FROM R R1, R R2
A

1

1

3

3

returns

In theory:
equivalent; on

A

1
3

A B

1 2
3 4

return

The infamous NULL
• Comparisons with nulls, like 2 = NULL, result in truth value

unknown

• It then propagates: true ⋀ unknown = unknown, true ⋁ unknown
= true

• rules of propositional 3-valued logic of Kleene

• When condition is evaluated, only tuples for which it is true are
returned

• false and unknown are treated the same

• It’s a weird logic and it is not the 3-valued predicate calculus!

The bottom line
• Many spherical cows out there but no real one.

• There are lots and lots of issues to address to give
proper semantics of SQL

• None of the simplified semantics came even close.

• We do it for the basic fragment of SQL:

• SELECT-FROM-WHERE without aggregation

• but with pretty much everything else

Syntax

Terms t: constants, nulls, or composite names

Names: either simple (R, A) or composite (R.A)

Predicates: anything you want on constants

⌧ : � := T1 AS N1, . . . , T

k

AS N

k

for ⌧ = (T1, . . . , T
k

), � = (N1, . . . , N
k

), k > 0

↵ : �0 := t1 AS N

0
1, . . . , t

m

AS N

0
k

for ↵ = (t1, . . . , tm), �

0= (N 0
1, . . . , N

0
m

), m > 0

Queries:

Q

:= SELECT [DISTINCT] ↵ : �0 FROM ⌧ : � WHERE ✓

| SELECT [DISTINCT] ⇤ FROM ⌧ : � WHERE ✓

| Q (UNION | INTERSECT | EXCEPT) [ALL] Q

Conditions:

✓

:= TRUE | FALSE | P (t1, . . . , t
k

), P 2 P
| t IS [NOT] NULL

| t̄ [NOT] IN Q | EXISTS Q

| ✓ AND ✓ | ✓ OR ✓ | NOT ✓

Figure 1: Syntax of basic SQL with user-defined predicates P

straightforward, the way column names are handled in SQL
is of paramount importance for providing the semantics of
queries, which is our goal, and it requires a few clarifications.

• Can column names be repeated? For base tables stored
in the database this is not allowed, but it is fairly easy
to write SQL queries that produce tables with repeated
column names. For example, if R is a base table with
a column named A, the query SELECT A,A FROM R out-
puts a table with two columns, both named A.

• What are column names exactly? If we only look at base
tables or at the output of an SQL query, these are just
attribute names. However, we also need to provide the
semantics of subqueries, and each subquery appearing
in the FROM clause is given a name. For example, in the
query

SELECT R.A, S.A FROM R, (SELECT A FROM R) AS S

the base table R and the subquery in FROMmust produce
a table whose columns are named R.A and S.A, which
are pairs of names.

Thus, in general, column names in a table can repeat, and
they can be either names or pairs of names. Towards cap-
turing this, we assume the following two countable infinite
sets:
• N of names, which will serve as names of tables and their

columns, and
• C of data values that, along with NULL, will populate data-

bases.
We refer to the elements of N as names, and to pairs of ele-
ments of N (i.e., elements of N2) as full names, for which we
will use the SQL-like notation N1.N2 rather than (N1, N2).

We can now define the data model. A record is a tuple of
elements of C[{NULL}, and a table of arity k > 0 is a bag of
records of length k. A schema is a set R ⇢ N of (base) table
names, where each R 2 R is associated with a non-empty
tuple `(R) of distinct attribute names from N. A database
D maps each R to a (base) table R

D of arity |`(R)|. We
write R(A1, . . . , An

) to indicate that `(R) = (A1, . . . , An

).

2.2 Syntax of basic SQL
Our goal is to define the semantics of syntactically correct

SQL queries, which have been successfully type-checked and
compiled. Thus, w.l.o.g. we assume that queries are given in
a form where all attribute names are fully annotated with
the name of the table they come from. As an example,
consider a schema with R(A) and T(A,B), and the query

SELECT A, B AS C
FROM R, (SELECT B FROM T) AS U
WHERE A = B

The fully annotated version of this query will be

SELECT R.A AS A, U.B AS C
FROM R AS R, (SELECT T.B AS B FROM T AS T) AS U
WHERE R.A = U.B

In other words, each base table or subquery in FROM is given
an explicit name, and its attributes are then qualified using
that name; moreover, the names of the attributes that will
appear in the output of the query are explicitly listed in the
SELECT clause. In fact, this closely resembles what happens
when compiling SQL queries: RDBMSs add similar annota-
tions to table and attribute names.
Another observation is that if a query compiled success-

fully, there are no type clashes, and thus we can assume that
all comparisons and operations are applied to arguments of
the right types. This explains why we assumed that there is
just one set of data values that includes values of all types.
As already explained, in this paper we fully analyze the

fragment that we call basic SQL. This fragment includes:
• the usual SELECT-FROM-WHERE queries;
• constants and NULLs in the SELECT list, along with (fully

qualified) attribute names;
• NULLs handled according to SQL’s 3-valued logic;
• arbitrary user-specified conditions on base types;
• correlated subqueries in WHERE connected with EXISTS,
IN and their negations;

• correlated subqueries in FROM;
• set and bag semantics of queries;
• operations of union, intersection, and di↵erence (in both

set and bag flavors); and
• arbitrary Boolean combinations of conditions.

Notations and conventions A term t is either a constant
in C, or NULL, or a full name in N

2. We let t̄ stand for tuples
of terms. We shall adopt the following conventions:

N ranges over names in N.
A ranges over full names (elements of N2).
↵ ranges over tuples of terms.
� ranges over tuples of names.
R ranges over names of base tables in a database.
c ranges over constants (elements of C).

References to tables are denoted by T , which indicates either
a query Q (whose output is indeed a table), or the name of
a base table R. We let ⌧ range over tuples of (references to)
tables.

The syntax of basic SQL is given in Figure 1, where both
queries Q and conditions ✓ are defined by mutual recursion:
queries have conditions in the WHERE clause, and a condition
may involve a query within EXISTS or IN.

Semantics: labels

`(R) = tuple of names provided by the schema

`(⌧) = `(T1) · · · `(T
k

) for ⌧ = (T1, . . . , T
k

)

`

✓

SELECT [DISTINCT] ↵ : �0

FROM ⌧ : � WHERE ✓

◆

= �

0

`

�

SELECT [DISTINCT] ⇤ FROM ⌧ : � WHERE ✓

�

= `(⌧)

`

�

Q1 (UNION | INTERSECT | EXCEPT) [ALL] Q2

�

= `(Q1)

Figure 2: Output attributes of basic SQL queries.

Observe that � and �

0 in queries provide explicit names for
the tables in FROM and for the terms in SELECT, respectively.

The fragment we consider is parameterized by a collection
P of predicates on base types. We assume that equality (=)
of values is always available, for all types. Other operations
can be type-specific, such as comparisons < and  for inte-
gers, or the lexicographic ordering and LIKE predicates for
strings. All we assume is that there is a well-defined seman-
tics of such predicates for non-null values of base types.

3. BASIC SQL: FORMAL SEMANTICS
Our goal now is to provide a formal semantics of queries

from the SQL fragment defined in the previous section. Fol-
lowing the standard convention, we denote the semantics of
a query Q by JQK. This is a function that takes a database
D as input and produces the output JQK

D

, which is the table
obtained by executing Q on D. The tuple of names assigned
to the columns of JQK

D

is denoted by `(Q), which is defined
inductively on the structure of Q as shown in Figure 2 (con-
catenation of tuples is denoted by juxtaposition). For exam-
ple, for Q = SELECT * FROM R,S on a schema with R(A,B)
and S(A,C), we have `(Q) = `(R) `(S) = (A,B,A,C).

As for JQK, in general it is not enough to assume that the
only input is the database D, since we also need to provide
the semantics of subqueries, which may take parameters. In
conditions of the form t̄ IN Q, for example, the query Q can
refer to full names in t̄, whose values come from elsewhere.
The standard way to account for this in programming se-
mantics [17, 26] is to define an environment ⌘ that provides
values for such parameters. In our case, the parameters are
full names, so ⌘ is a partial map from N

2 to values, that pro-
vides the binding for each pair of table name and attribute
name (e.g., S.B) on which it is defined.

This suggests that the function we need to define is JQK
D,⌘

that takes a databaseD and the bindings of the environment
⌘ and produces the output of Q. Then, for a query without
parameters, we are looking at JQK

D

= JQK
D,?.

This is almost true, but there is one more Boolean input
that needs to be added. The problem with the definitions
of the SQL Standard is that the semantics of queries is not
compositional: that is, semantically a query can behave dif-
ferently depending on the context in which it occurs. This is
true of queries of the form SELECT *. Normally * means that
all attributes have to be returned, but if such a query occurs
under EXISTS, then * is equivalent to having any constant c
in its place. This could lead to di↵erent behaviors. For ex-
ample, given a base table R with attribute A, the query Q =
SELECT * FROM (SELECT R.A, R.A FROM R) AS T will fail

due to the ambiguity of the reference to R.A,1 but the query
SELECT * FROM R WHERE EXISTS (Q) will work and output
R whenever it is nonempty. Thus, the same query Q has
di↵erent semantics depending on the context.
To take into account the two meanings of * in the SELECT

clause of queries, we introduce an additional Boolean input
to JQK. If Q is the outermost query nested inside an EXISTS
condition, this switch is set to 1, otherwise to 0. Then, when
Q is of the form SELECT * . . . , value 1 indicates that * is to
be replaced with an arbitrary constant, and 0 that it must
be expanded into a list of full names (provided by the FROM
clause, as we shall see shortly). Thus, our semantic function
becomes JQK

D,⌘,x

where x is the value of the Boolean switch;
for the top-level query Q, we then take JQK

D

= JQK
D,?,0.

Before providing the formal semantics of SQL queries, we
need to introduce a few notions related to names and their
bindings, and define operations on relations.

Scopes and bindings Each full name M.N mentioned in
the SELECT or WHERE clause of queries is a reference to some
attribute N in some table M . How are references resolved?
Each SELECT-FROM-WHERE block defines a scope, and scopes
are nested according to the structure of the query. Then, for
each reference M.N , we first look for a match (i.e., a table
M with an attribute N) in the FROM clause of the local scope
where the reference occurs; if a match is not found (which
is the case of parameters), we look at the FROM clause of the
innermost scope in which the current one is nested, and so
on until a match is found (or the query does not compile).
To model the notion of scope, we first define the operation

N.(N1, . . . , Nn

) that prefixes each nameN
i

withN , yielding
the tuple of full names (N.N1, . . . , N.N

m

). For ⌧ = (T1, . . . ,

T

k

) and � = (N1, . . . , N
k

), we then let

`(⌧ : �) = N1.`(T1) · · ·N
k

.`(T
k

)

where again juxtaposition means concatenation of tuples.
We now formalize how the full names in a scope are bound

to the values of a record in order to provide an environment.
Given a tuple of full names Ā = (A1, . . . , Am

) and a record
r̄ = (a1, . . . , am

) of the same length, we define the environ-
ment ⌘

Ā,r̄

that maps each non-repeated element A
i

of Ā to
the corresponding value a

i

of r̄; if A
i

occurs more than once
in Ā, then ⌘

Ā,r̄

is not defined on it (a reference to a repeated
full name is ambiguous).
The following definitions formalize how an environment is

updated w.r.t. a scope and revised with new bindings. Given
an environment ⌘ and a tuple of full names Ā, we denote
by ⌘ * Ā the environment obtained by removing from ⌘ the
bindings for all elements of Ā. That is, ⌘ * Ā is undefined
on every A 2 Ā, and it is otherwise identical to ⌘. Given
two environments ⌘ and ⌘

0, by ⌘; ⌘0 we mean ⌘ overridden
by ⌘

0. That is, ⌘; ⌘0(A) = ⌘(A) if ⌘ is defined on A and ⌘

0

is not; otherwise ⌘; ⌘0(A) = ⌘

0(A). Finally, we can put all of
the above together and define

⌘

r̄

� Ā =
�

⌘ * Ā

�

; ⌘
Ā,r̄

which updates ⌘ by first unbinding the full names in Ā and
then overridding the result by ⌘

Ā,r̄

.

Operations on tables To describe the semantics of SQL
queries, we will use some of the standard operations on bags

1This is the behavior prescribed by the Standard; not all
RDBMSs follow it, see Section 4.

Semantics
⟦Q⟧D,𝜂,x

Q: query

D: database
𝜂: environment (values for composite names)

x: Boolean switch to account for non-compositional nature of

SELECT * (to show where we are in the query)

Semantics of terms

JtK
⌘

=

8

>

<

>

:

⌘(A) if t = A

c if t = c 2 C

NULL if t = NULL

J(t1, . . . , tn)K⌘ =
�

Jt1K⌘, . . . , JtnK
⌘

�

Figure 3: Semantics of SQL terms and truth values.

[3, 15, 22]. We denote by #(r̄, T) the number of occurrences
(mutiplicity) of a record r̄ in table T ; if r̄ does not occur in
T , then #(r̄, T) = 0. We also write r̄ 2

k

T for #(r̄, T) = k.
In addition, we use r̄ 2 T to indicate that r̄ 2

k

T for some
k > 0, and r̄ 62 T for r̄ 20 T .

The bag operations [, \ and � are defined as follows:

#(t̄, T1 [T2) = #(t̄, T1) + #(t̄, T2)

#(t̄, T1 \ T2) = min
�#(t̄, T1) ,#(t̄, T2)

�

#(t̄, T1 � T2) = max
�#(t̄, T1)� #(t̄, T2) , 0

�

Cartesian product ⇥ multiplies the number of occurences of
tuples: that is, #�(t̄1, t̄2), T1 ⇥ T2

�

= #(t̄1, T1) · #(t̄2, T2).
Finally, the duplicate elimination operation " turns a bag
into a set by only keeping one occurrence of each tuple;
formally #(t̄, "(T)) = min

�#(t̄, T) , 1
�

.

Explanation of the semantics
We now explain the key elements of the semantics, presented
in Figures 3–6. The semantic function J·K takes di↵erent in-
puts depending on the syntactic construct under considera-
tion: for queries Q the inputs are a database D, an environ-
ment ⌘ and a Boolean variable x whose value is either 0 or
1; for conditions ✓, the inputs are just the database and the
environment; for terms t, the only input is the environment.

Terms (see Figure 3) The semantics of a term is given by the
environment ⌘: if a term t is a constant or null, it denotes
itself; if it is a full name A, then it denotes ⌘(A). The
semantics of a tuple t̄ of terms is simply the tuple of values
obtained by interpreting each term in t̄.

Queries (see Figure 4) A base table R obviously denotes its
interpretation in the database, i.e., RD. The evaluation of a
SELECT-FROM-WHERE block starts by computing the Cartesian
product of the tables produced by the elements of ⌧ , each
of which is either a base tables or the output of a subquery.
When the WHERE ✓ clause is added, the tuples satisfying ✓

are selected from the product. Observe that in this case the
environment changes: when the condition ✓ is evaluated for
a record in the Cartesian product, the environment must be
revised with the bindings for that record, because the scope
of the local FROM clause has precedence over the outer scopes.
For each record in the product that satisfies ✓, the revised
environment is then applied to the SELECT list ↵, which may
also contain parameters, to produce the final output.
As discussed before, if the SELECT list is “*”, the behavior

depends on the context in which the query block occurs; this
is determined by the value of the Boolean switch x, which
is set to 1 only for queries nested in an EXISTS condition.

Conditions (see Figure 5) As already mentioned, SQL op-
erates with three truth values: true t, false f , and unknown
u. The semantics of a condition is one of these truth values.

The expressions TRUE and FALSE denote t and f respectively.
For a k-ary predicate P , defined on non-null values, the se-
mantics is u if one of the arguments is NULL. For equality,
which is always assumed to be among the available predi-
cates, we have that Jt1 = t2KD,⌘

is u if one of Jt1K⌘ or Jt2K⌘
is NULL; if both are elements c1, c2 2 C, then the semantics
is simply the result of the comparison c1 = c2.
The condition t̄ IN Q is the disjunction of all the equalities

t̄ = s̄ for every s̄ in the output of Q, while EXISTS Q tests for
non-emptiness. Note that, among conditions, only the basic
predicates P 2 P and t̄ IN Q can produce the truth value u;
this is then propagated through the connectives ^, _ and ¬
following the truth tables of SQL’s 3VL, which corresponds
to what is known as the Kleene logic (see [5]).

Operations (see Figure 6) UNION ALL, INTERSECT ALL, and
EXCEPT ALL are the bag operations [, \, and � we described
before. Without the keyword ALL, their set-theoretic version
is used (for di↵erence, duplicate elimination is applied first).

Examples It is easy to follow the rules of the semantics
to see that queries Q1–Q3 from the introduction produce
exactly the same results as they should, namely ?, {1, NULL}
and {1} on a database with R = {1, NULL} and S = {NULL}.
As for the queries in the third example in the introduction,

the first of them will be rejected since it will force a SELECT
list containing an ambiguous reference (i.e., a full name that
is repeated in the FROM clause of the scope against which it
resolves). The second one, as it occurs under EXISTS, will be
allowed, because * will be replaced by an arbitrary constant
and no such ambiguity will occur.
These observations confirm the correctness of the seman-

tics on the small number of examples from the introduction;
in the next section we shall use many more examples of
queries for validating the semantics.

4. EXPERIMENTAL VALIDATION OF SQL
SEMANTICS

Now that we have given a formal semantics of basic SQL
queries, how can we be sure that it is correct? The Standard
is written in natural language; this was the motivation to
provide a proper formal specification for the language in the
first place. But what does it even mean that the semantics is
correct? Intuitively, the correctness of the semantics should
entail that it produces the same results as real RDBMSs do.
Of course, proving such a statement formally is infeasible,
which leaves open one route: experimental validation.
Thus, our plan is to experimentally confirm, with a su�-

ciently high degree of confidence, that the formal semantics
from Section 2 is the right one, i.e., agrees with a very large
number of randomly generated SQL queries, on random rela-
tional databases. There is one obstacle though, already dis-
cussed in the introduction. We formalized the description of
the Standard, but all RDBMSs deviate from the Standard,
typically in small but nonetheless significant ways [4, 21].
These necessitate adjusting the semantics we presented to
account for the small di↵erences real systems have with the
Standard.
To give some concrete example, PostgreSQL has chosen to

use compositional semantics of queries: that is, SELECT * be-
haves in the same way regardless of the context in which the
query is used. This means that the extra Boolean switch is

Semantics: queries
JRK

D,⌘,x

= R

D

J⌧ : �K
D,⌘,x

= JT1KD,⌘,0 ⇥ · · ·⇥ JT
k

K
D,⌘,0 for ⌧ = (T1, . . . , T

k

)

s
FROM ⌧ : �
WHERE ✓

{

D,⌘,x

=

8

<

:

r̄, . . . , r̄

| {z }

k times

�

�

�

�

�

�

r̄ 2
k

J⌧ : �K
D,⌘,0, J✓K

D,⌘

0 = t, ⌘

0 = ⌘

r̄

� `(⌧ : �)

9

=

;

u
v

SELECT ↵ : �0

FROM ⌧ : �
WHERE ✓

}
~

D,⌘,x

=

8

<

:

J↵K
⌘

0
, . . . , J↵K

⌘

0
| {z }

k times

�

�

�

�

�

�

⌘

0 = ⌘

r̄

� `(⌧ : �), r̄ 2
k

s
FROM ⌧ : �
WHERE ✓

{

D,⌘,x

9

=

;

u
v

SELECT ⇤
FROM ⌧ : �
WHERE ✓

}
~

D,⌘,0

=

u
v

SELECT `(⌧ : �) : `(⌧)
FROM ⌧ : �
WHERE ✓

}
~

D,⌘,0u
v

SELECT ⇤
FROM ⌧ : �
WHERE ✓

}
~

D,⌘,1

=

u
v

SELECT c AS N

FROM ⌧ : �
WHERE ✓

}
~

D,⌘,1

for arbitrary c 2 C and N 2 N

s
SELECT DISTINCT ↵ : �0 | ⇤
FROM ⌧ : � WHERE ✓

{

D,⌘,x

= "

 s
SELECT ↵ : �0 | ⇤
FROM ⌧ : � WHERE ✓

{

D,⌘,x

!

Figure 4: Semantics of basic SQL: Queries.

JP (t1, . . . , t
k

)K
D,⌘

=

8

>

<

>

:

t if P
�

Jt1K⌘, . . . , Jt
k

K
⌘

�

holds and Jt
i

K
⌘

6= NULL for all i 2 {1, . . . , k}
f if P

�

Jt1K⌘, . . . , Jt
k

K
⌘

�

does not hold and Jt
i

K
⌘

6= NULL for all i 2 {1, . . . , k}
u if Jt

i

K
⌘

= NULL for some i 2 {1, . . . , k}

Jt IS NULLK
D,⌘

=

(

t if JtK
⌘

= NULL

f if JtK
⌘

6= NULL

Jt IS NOT NULLK
D,⌘

= ¬Jt IS NULLK
D,⌘

J(t1, . . . tn) = (t01, . . . , t
0
n

)K
D,⌘

=
n

^

i=1

Jt
i

= t

0
i

K
D,⌘

J(t1, . . . tn) 6= (t01, . . . , t
0
n

)K
D,⌘

=
n

_

i=1

Jt
i

6= t

0
i

K
D,⌘

Jt̄ IN QK
D,⌘

=

8

>

<

>

:

t if 9r̄ 2 JQK
D,⌘,0 s.t. Jt̄ = r̄K

D,⌘

= t

f if 8r̄ 2 JQK
D,⌘,0 s.t. Jt̄ = r̄K

D,⌘

= f

u if @r̄ 2 JQK
D,⌘,0 s.t. Jt̄ = r̄K

D,⌘

= t and 9r̄ 2 JQK
D,⌘,0 s.t. Jt̄ = r̄K

D,⌘

6= f

Jt̄ NOT IN QK
D,⌘

= ¬Jt̄ IN QK
D,⌘

JEXISTS QK
D,⌘

=

(

t if JQK
D,⌘,1 6= ?

f if JQK
D,⌘,1 = ?

JTRUEK
D,⌘

= t J✓1 AND ✓2KD,⌘

= J✓1KD,⌘

^ J✓2KD,⌘

JNOT ✓K
D,⌘

= ¬J✓K
D,⌘

JFALSEK
D,⌘

= f J✓1 OR ✓2KD,⌘

= J✓1KD,⌘

_ J✓2KD,⌘

Truth Tables:

^ t f u

t t f u
f f f f
u u f u

_ t f u

t t t t
f t f u
u t u u

¬
t f
f t
u u

Figure 5: Semantics of basic SQL: Conditions.

Semantics: conditions

JRK
D,⌘,x

= R

D

J⌧ : �K
D,⌘,x

= JT1KD,⌘,0 ⇥ · · ·⇥ JT
k

K
D,⌘,0 for ⌧ = (T1, . . . , T

k

)

s
FROM ⌧ : �
WHERE ✓

{

D,⌘,x

=

8

<

:

r̄, . . . , r̄

| {z }

k times

�

�

�

�

�

�

r̄ 2
k

J⌧ : �K
D,⌘,0, J✓K

D,⌘

0 = t, ⌘

0 = ⌘

r̄

� `(⌧ : �)

9

=

;

u
v

SELECT ↵ : �0

FROM ⌧ : �
WHERE ✓

}
~

D,⌘,x

=

8

<

:

J↵K
⌘

0
, . . . , J↵K

⌘

0
| {z }

k times

�

�

�

�

�

�

⌘

0 = ⌘

r̄

� `(⌧ : �), r̄ 2
k

s
FROM ⌧ : �
WHERE ✓

{

D,⌘,x

9

=

;

u
v

SELECT ⇤
FROM ⌧ : �
WHERE ✓

}
~

D,⌘,0

=

u
v

SELECT `(⌧ : �) : `(⌧)
FROM ⌧ : �
WHERE ✓

}
~

D,⌘,0u
v

SELECT ⇤
FROM ⌧ : �
WHERE ✓

}
~

D,⌘,1

=

u
v

SELECT c AS N

FROM ⌧ : �
WHERE ✓

}
~

D,⌘,1

for arbitrary c 2 C and N 2 N

s
SELECT DISTINCT ↵ : �0 | ⇤
FROM ⌧ : � WHERE ✓

{

D,⌘,x

= "

 s
SELECT ↵ : �0 | ⇤
FROM ⌧ : � WHERE ✓

{

D,⌘,x

!

Figure 4: Semantics of basic SQL: Queries.

JP (t1, . . . , t
k

)K
D,⌘

=

8

>

<

>

:

t if P
�

Jt1K⌘, . . . , Jt
k

K
⌘

�

holds and Jt
i

K
⌘

6= NULL for all i 2 {1, . . . , k}
f if P

�

Jt1K⌘, . . . , Jt
k

K
⌘

�

does not hold and Jt
i

K
⌘

6= NULL for all i 2 {1, . . . , k}
u if Jt

i

K
⌘

= NULL for some i 2 {1, . . . , k}

Jt IS NULLK
D,⌘

=

(

t if JtK
⌘

= NULL

f if JtK
⌘

6= NULL

Jt IS NOT NULLK
D,⌘

= ¬Jt IS NULLK
D,⌘

J(t1, . . . tn) = (t01, . . . , t
0
n

)K
D,⌘

=
n

^

i=1

Jt
i

= t

0
i

K
D,⌘

J(t1, . . . tn) 6= (t01, . . . , t
0
n

)K
D,⌘

=
n

_

i=1

Jt
i

6= t

0
i

K
D,⌘

Jt̄ IN QK
D,⌘

=

8

>

<

>

:

t if 9r̄ 2 JQK
D,⌘,0 s.t. Jt̄ = r̄K

D,⌘

= t

f if 8r̄ 2 JQK
D,⌘,0 s.t. Jt̄ = r̄K

D,⌘

= f

u if @r̄ 2 JQK
D,⌘,0 s.t. Jt̄ = r̄K

D,⌘

= t and 9r̄ 2 JQK
D,⌘,0 s.t. Jt̄ = r̄K

D,⌘

6= f

Jt̄ NOT IN QK
D,⌘

= ¬Jt̄ IN QK
D,⌘

JEXISTS QK
D,⌘

=

(

t if JQK
D,⌘,1 6= ?

f if JQK
D,⌘,1 = ?

JTRUEK
D,⌘

= t J✓1 AND ✓2KD,⌘

= J✓1KD,⌘

^ J✓2KD,⌘

JNOT ✓K
D,⌘

= ¬J✓K
D,⌘

JFALSEK
D,⌘

= f J✓1 OR ✓2KD,⌘

= J✓1KD,⌘

_ J✓2KD,⌘

Truth Tables:

^ t f u

t t f u
f f f f
u u f u

_ t f u

t t t t
f t f u
u t u u

¬
t f
f t
u u

Figure 5: Semantics of basic SQL: Conditions.

Semantics: operations

JQ1 UNION ALL Q2KD,⌘,x

= JQ1KD,⌘,0 [JQ2KD,⌘,0

JQ1 INTERSECT ALL Q2KD,⌘,x

= JQ1KD,⌘,0 \ JQ2KD,⌘,0

JQ1 EXCEPT ALL Q2KD,⌘,x

= JQ1KD,⌘,0 � JQ2KD,⌘,0

JQ1 UNION Q2KD,⌘,x

= "

�

JQ1 UNION ALL Q2KD,⌘,x

�

JQ1 INTERSECT Q2KD,⌘,x

= "

�

JQ1 INTERSECT ALL Q2KD,⌘,x

�

JQ1 EXCEPT Q2KD,⌘,x

= "

�

JQ1KD,⌘,0

�

� JQ2KD,⌘,0

Figure 6: Semantics of basic SQL: Operations.

no longer needed and we just need to provide the semantics
JQK

D,⌘

. The rule for SELECT * then simply changes to
u
v

SELECT ⇤
FROM ⌧ : �
WHERE ✓

}
~

D,⌘

=

s
FROM ⌧ : �
WHERE ✓

{

D,⌘

Other systems slightly change the syntax; for example Or-
acle uses MINUS instead of EXCEPT, while MySQL does not
have it altogether. Such syntactic modifications are easy to
account for.

Thus, to experimentally validate the semantics, we need to
provide minor adjustments so that it would capture precisely
what a concrete system implements. Under this understand-
ing, we need to describe the following three components:

1. the correctness criterion;
2. the query generator for experiments;
3. implementation of the formal semantics; and
4. results of the experiments.

Correctness criterion Once we implement the semantics,
we shall validate it w.r.t. a large number of randomly gener-
ated SQL queries, on random relational databases. By vali-
dating we mean that the semantics coincides with the result
of executing the same query on an RDBMS. By “coincide”
we mean that the table obtained from our implementation
of the semantics and the table obtained as output from the
DBMS have precisely the same number of columns, with the
same names and in the same order, and that they have pre-
cisely the same rows (with the same multiplicities) although
their order is arbitrary.

Query generator There are well-defined database bench-
marks, like TPC-H [31], but they are designed for analyzing
database performance. Benchmarks use commonly occur-
ring queries (e.g., business support queries in TPC-H), but
they have relatively few of them (22 for TPC-H). In order to
validate the semantics, we need to compare it with the out-
put of DBMSs on a significantly larger number of queries.
While this precludes the use of standard benchmarks, we
can still look at them to analyze the structure and features
of their queries, and use those to generate a large number of
queries that look somewhat like those found in benchmarks.

Towards that goal, we look at characteristics of the TPC-
H benchmark. There are a total of eight base tables, but on
average each benchmark query uses only 3.2 and all queries
but one use 6 or fewer. Each query uses relatively few WHERE
conditions per block, in fact only three queries use more than
8 conditions, and no query exceeds three levels of nesting.

We implemented a random query generator, which takes
as input a schema, a set of names that can be used as aliases
for attributes and tables, and the following parameters:

• tables = max number of tables (counting repetitions)
mentioned in a well-defined SELECT-FROM-WHERE block,
including nested subqueries;

• nest = max level of nested queries in FROM and WHERE;
• attr = max number of attributes in a SELECT clause;
• cond = max number of atomic conditions in WHERE.

Based on the above observations from TPC-H, we chose the
values table = 6, nest = 3, attr = 3, cond = 8.

Implementation of the semantics We implemented the
semantics of Figures 3–6 in Python. Note that we only need
this implementation to verify correctness against RDBMSs,
and not for its performance. In fact, we have two slightly dif-
ferent implementations: one that accounts for PostgreSQL’s
compositional semantics, and one for Oracle’s syntax.

Experimental results We used a fixed schema with base
tables R1, . . . , R8, where each R

i

consists of i+1 attributes.
Since the data type of values is immaterial to our semantics,
to avoid type checking and therefore simplify query gener-
ation, all attributes in the schema are of type int. Using
the query generator described earlier, we generated 100,000
random queries over this schema, and for each of them we
generated a corresponding database instance using the ran-
dom data generator Datafiller [11]. As we are not assessing
performance here, the size of database instances is of sec-
ondary importance; hence, to speed up our implementation
of the semantics (which computes Cartesian products) we
capped the size of each generated base table to 50 rows.
For each query and associated database, we compared the

output of PostgreSQL and Oracle with the output produced
by our implementation of each variant of the semantics. The
results were always the same. In particular, for some queries
involving SELECT * Oracle raised an error due to presence of
ambiguous references; in each of these cases, our implemen-
tation (the variant adjusted for Oracle) also raised an error,
due to the environment being undefined on such ambiguous
references, as expected. Of course, these situations did not
arise for PostgreSQL.
This gives us good evidence to state that the semantics of

Figures 3–6 is correct.

To sum up, our experiments validate the semantics of Sec-
tion 2, and allow us to proceed to use this semantics in two
applications that formally prove results about real-life SQL.

5. APPLICATION: EQUIVALENCE OF
SQL AND ALGEBRA

It is a fundamental result of relational database theory
that the expressiveness of the basic declarative query lan-
guage, relational calculus, is the same as that of the basic

Bag interpretation of operations; ∊ is duplicate elimination

Looks simple, no?
• It does not. Such basic things as variable binding

changed several times till we got them right.

• The meaning of the new environment:

• in 𝜼, unbind every name that occurs among labels
of the FROM clause

• then bind non-repeated names among those to
values taken from record r

!
FROM τ : β
WHERE θ

"

D,η,x

=

⎧
⎨

⎩ r̄, . . . , r̄︸ ︷︷ ︸
k times

∣∣∣∣∣∣
r̄ ∈k #τ : β$D,η,0, #θ$D,η′ = t, η′ = η

r̄
⊕ ℓ(τ : β)

⎫
⎬

⎭

How do we know we got it right?

• Since the Standard is rather vague, there is only
one way — experiments.

• But what kind of benchmark can we use?

• For performance studies there are standard
benchmarks like TPC-H. But they won’t work for us:
not enough queries.

Experimental Validation
• Benchmarks have rather few queries (22 in TPC-H). Validating on

22 queries is not a good evidence.

• But we can look at benchmarks, and then generate lots of queries
that look the same.

• In TPC-H:

• 8 tables,

• maximum nesting depth = 3,

• average number of tables per query = 3.2,

• at most 8 conditions in WHERE (except two queries)

Validation: results
• Small adjustments of the Standard semantics (for

Postgres and Oracle)

• Random query generator

• Naive implementation of the semantics

• Finally: experiments on 100,000 random queries

Validation: results
• Small adjustments of the Standard semantics (for

Postgres and Oracle)

• Random query generator

• Naive implementation of the semantics

• Finally: experiments on 100,000 random queries

• Yes, we got it right!

What can we do with this?

• Equivalence of basic SQL and Relational Algebra:
formally proved for the first time.

• 3-valued logic of SQL vs the usual Boolean logic: is
there any difference?

• We formally prove SQL = Relational Algebra (RA)

• with nulls, subqueries, bags, all there is. And
RA has to be defined properly too, to use bags
and SQL’s 3-valued logic.

• a small caveat: in RA, attributes cannot repeat.
So the equality is wrt queries that do not return
repeated attributes.

Basic SQL = Relational Algebra

3-valued logic of nulls

• From the early SQL days and database textbooks:
if you have nulls, you need 3-valued logic.

• But 3-valued logic is not the first thing you think of
as a logician.

• And it makes sense to think as a logician: after all,
the core of SQL is claimed to be first-order logic in a
different syntax.

What would a logician do?

What would a logician do?

• First Order Logic (FO)

• domain has usual values and NULL

• Syntactic equality: NULL = NULL but NULL ≠ 5 etc

• Boolean logic rules for ∧, ∨,

• Quantifiers: ∀ is conjunction, ∃ is disjunction

What did SQL do?

What did SQL do?
• 3-valued FO (a textbook version)

• domain has usual values and NULL

• comparisons with NULL result in unknown

• Kleene logic rules for ∧, ∨,

• Quantifiers: ∀ is conjunction, ∃ is disjunction

What did SQL do?
• 3-valued FO (a textbook version)

• domain has usual values and NULL

• comparisons with NULL result in unknown

• Kleene logic rules for ∧, ∨,

• Quantifiers: ∀ is conjunction, ∃ is disjunction

• Seemingly more expressive.

What did SQL do?
• 3-valued FO (a textbook version)

• domain has usual values and NULL

• comparisons with NULL result in unknown

• Kleene logic rules for ∧, ∨,

• Quantifiers: ∀ is conjunction, ∃ is disjunction

• Seemingly more expressive.

• But does it correspond to reality?

SQL logic is NOT 2-valued or 3-valued:
it’s a mix

• Conditions in WHERE are evaluated under 3-valued
logic. But then only those evaluated to true matter.

• Studied before only at the level of propositional logic.

• In 1939, Russian logician Bochvar wanted to give a
formal treatment of logical paradoxes. He needed to
assert that something is true, and introduced a new
connective: ↑p means that p is true.

• Amazingly, 40 years later SQL adopted the same idea.

What did SQL really do?
• 3-valued FO with ↑:

• domain has usual values and NULL

• comparisons with NULL result in unknown

• Kleene logic rules for ∧, ∨,

• Quantifiers: ∀ is conjunction, ∃ is disjunction

• Add ↑ with the semantics

true, if φ is true
false, if φ is false or unknown↑φ = {

What IS the logic of SQL?

What IS the logic of SQL?

• We have:

• logician’s 2-valued FO

• 3-valued FO (Kleene logic)

• 3-valued FO + Bochvar’s assertion (SQL logic)

What IS the logic of SQL?

• We have:

• logician’s 2-valued FO

• 3-valued FO (Kleene logic)

• 3-valued FO + Bochvar’s assertion (SQL logic)

• AND THEY ARE ALL THE SAME!

THEOREM: ↑can be expressed in 3-valued FO.

3-valued FO = 3-valued FO with ↑

THEOREM: For every formula φ of 3-valued FO,
there is a formula ψ of the usual 2-valued FO

such that

φ is true ⇔ ψ is true

THEOREM: ↑can be expressed in 3-valued FO.

3-valued FO = 3-valued FO with ↑

THEOREM: For every formula φ of 3-valued FO,
there is a formula ψ of the usual 2-valued FO

such that

φ is true ⇔ ψ is true

Translations work at the level of SQL too!

2-valued SQL
Idea — 3 simultaneous translations:

• conditions P Pt and Pf

• Queries Q Q’

Pt and Pf are Boolean conditions: Pt / Pf is true
iff P under 3-valued logic is true / false.

In Q’ we simply replace P by Pt

2-valued SQL: translation
P (t̄)t = P (t̄) P (t1, . . . , t

k

)f = NOT P (t1, . . . , t
k

) AND t̄ IS NOT NULL

(EXISTS Q)t = EXISTS Q

0 (EXISTS Q)f = NOT EXISTS Q

0

(✓1 ^ ✓2)
t = ✓

t
1 ^ ✓

t
2 (✓1 ^ ✓2)

f = ✓

f
1 _ ✓

f
2

(✓1 _ ✓2)
t = ✓

t
1 _ ✓

t
2 (✓1 _ ✓2)

f = ✓

f
1 ^ ✓

f
2

(¬✓)t = ✓

f (¬✓)f = ✓

t

(t IS NULL)t = t IS NULL (t IS NULL)f = t IS NOT NULL

(t̄ IN Q)t = t̄ IN Q

0 �

(t1, . . . , tn) IN Q

�f
= NOT EXISTS

�

SELECT * FROM Q

0 AS N(A1, . . . , An

) WHERE
(t1 IS NULL OR A1 IS NULL OR t1 = N.A1) AND · · ·
· · · AND (t

n

IS NULL OR A

n

IS NULL OR t

n

= N.A

n

)
�

Figure 10: Translations of conditions for the Q 7! Q

0 translation

This extension of RA to bags is equivalent to comprehension-
based languages that share many features with SQL [16,
23]. While such languages were used to study the expressive
power of SQL, they are not SQL; rather, they are theoreti-
cal reconstructions of it that allow one to prove equivalence
results but di↵er significantly from the real language, in par-
ticular w.r.t. handling nulls and variable bindings.

A di↵erent line of work attempted to provide a formal se-
mantics of SQL directly, but all such attempts have fallen
short of the real language. An early paper [29] looked only
at set semantics, and the more recent and rigorous formal-
ization [8, 9] – designed to prove equivalences of queries with
the help of a proof assistant – did not include null values and
used a reconstruction of the language, thus not accounting
for some of the trickier aspects of variable binding. Other
attempts were made in the programming languages commu-
nity [24, 37] but they too restricted the language signifi-
cantly: for example, [24] works essentially with RA, rather
than SQL, under set semantics, while [37] disallows nested
subqueries in both FROM and WHERE and uses list semantics.

We remark that none of the above mentioned works made
any e↵ort to justify, neither experimentally nor by any other
means, the semantics they proposed. So there is no evidence
that these semantics reflect the real behavior of SQL, even if
we take into account the specific restrictions they imposed.

On the logic side, to the best of our knowledge, the only
approach to combine 3VL with Boolean logic along the lines
of SQL is external Bochvar logic, which has a special connec-
tive conflating false and unknown. However, this has mainly
been the subject of study of philosophical logic [25, 34] and
therefore restricted to the propositional case. A two-valued
logic for nulls based on collapsing u and f was also consid-
ered in [5] for a fragment of SQL, but no comparison of its
expressiveness with the standard semantics was made.

8. CONCLUSION
We have produced a formal semantics of a basic fragment

of SQL that behaves like the real-life SQL does, as opposed
to its theoretical reconstructions with their many simplifica-
tions. We verified its behavior experimentally on a very large
number of queries. Using this formal semantics, we provided
two applications. We formally proved the equivalence of the
basic fragment with relational algebra (something that had
only been done in the past under significant simplifications

that do not reflect the real behavior of the language). We
also formally showed that 3VL is not required to achieve the
full expressiveness of this fragment of SQL, and somewhat
surprisingly the familiar two-valued logic does the job.
From a practical point of view, our formal semantics could

be a useful tool for both users and implementers in under-
standing the behavior of SQL queries. It is much more con-
cise than the natural language specification of the Standard,
as well as being very easy to implement and modify. In fact,
we advocate that our formal semantics (or a variant of it, if
necessary) should be an integral part of the Standard and
serve as the basis for a reference implementation endorsed
by ISO. The compliance of a DBMS with the Standard could
then be verified against this implementation, for example by
means of an appropriate suite of test cases like the Technol-
ogy Compatibility Kit developed by the openCypher initia-
tive in the context of graph databases [30].

Future work. A first natural direction for future work is
to extend the formal semantics, and its experimental valida-
tion, to include more features of the language, especially ag-
gregation and grouping, but also capabilities that go beyond
queries, such as schema definition, constraints and updates.
Some of the restricted SQL semantics [9, 24, 37] were de-

fined for verifying the correctness of SQL optimization rules.
They could only do so under the restrictions they imposed;
thus it would be interesting to see what such verification
techniques would yield without restrictions on the language.
The equivalence between two-valued and three-valued se-

mantics of SQL raises some interesting questions too: would
two-valued queries be natural for a common user to write?
We do believe that people tend to think in terms of true and
false only, rather than three truth values. But of course this
conjecture should be confirmed (or disproved) by a proper
usability study.
Yet another line for future work is the extension of recent

attempts [17] to restore correctness of SQL query evaluation
with incomplete data. Due to the lack of a formal semantics
for query evaluation with SQL nulls, so far this has only been
done for databases with marked nulls. Now we have the for-
mal tools to extend the notions of certainty and possibility
to handle SQL’s nulls.

Acknowledgements. The authors would like to thank the
anonymous referees for their comments. Work partially sup-
ported by EPSRC grants N023056 and M025268.

Note: a lot of disjunctions with IS NULL conditions

Shall we switch to 2-valued SQL?

• Not so fast perhaps. Two reasons:

• all the legacy code that uses 3-values

• using 2 truth values introduces many new
disjunctions. And DBMSs don’t like disjunctions!

Shall we switch to 2-valued SQL?

• Not so fast perhaps. Two reasons:

• all the legacy code that uses 3-values

• using 2 truth values introduces many new
disjunctions. And DBMSs don’t like disjunctions!

• As to why, this comment line in Postgres optimizer code
sheds some light:

Shall we switch to 2-valued SQL?

• Not so fast perhaps. Two reasons:

• all the legacy code that uses 3-values

• using 2 truth values introduces many new
disjunctions. And DBMSs don’t like disjunctions!

• As to why, this comment line in Postgres optimizer code
sheds some light:

• /* we stop as soon as we hit a non-AND item */

Questions?

