Do we really understand SQL?

Leonid Libkin
University of Edinburgh

Joint work with Paolo Guagliardo, also from Edinburgh

Basic questions

- We are taught that the core of SQL is essentially
syntax for relational calculus (first-order logic). Is it
true?

- We are taught that core SQL can be translated into
relational algebra. Is it true?

- We are taught that SQL needs 3-valued logic to
deal with missing information (nulls). Is it true?

Votivation

+ Why even ask such questions? It's the stuff from

the 1980s (or earlier). It's all in database textbooks
and taught in all database courses.

- This is exactly what we thought until we got into
some specific problems related to real-life SQL

+ S0 we start with a bit of history

Old days (betore 1969

Various ad-hoc
database modes:

enetwork
ehierarchical

writing queries: a
very elaborate task

All changed in 1969: Codd’s relational model;
now dominates the world

Relational Moaqgel

Orders
ORDER _ID TITLE PRICE
Ord| “Big Data” | 30
Ord2 “SQL”’ 35
Ord3 “Logic” 50

CUST_ID ORDER

cl

Pay

Ord|

c2

Ord2

Customer

CUST_ID NAME

cl John

c2 Mary

Re\ancma\ Vlioqel

Orders Customer
ORDER_ID TITLE PRICE CUST ID ORDER CUST ID NAME
Ord| “Big Data” | 30
cl Ord| cl John
Or‘dZ “SQL” 35 2 O d2 2 M
Ord3 “Logic” 50 - : - !

Language: Relational Algebra (RA)

eprojection m (find book titles)
eselection o (find books that cost at least £40)
eCartesian product x

e NiON U

*difference -

Queries

Find ids of customers who buy all books:
Tlcust id (PaY) =
Tlcust id ((T[Cust_id(PaY) X T[title(order)) -

Tcust_id. title (Gorder_id:order (Order x PaY)))

Queries

Find ids of customers who buy all books:
Tteust_id (Pay) -
Tlcust_id ((‘lT cust_id(Pay) x ﬂtitle(order)) B
Toust_id,itle (Gorder id=order (Order x Pay)))

That's not pretty. But here is a better idea (1971):
express queries in logic

Queries

Find ids of customers who buy all books:
Tlcust id (PaY) =
Tlcust id ((T[Cust_id(PaY) X T[title(Ol’der)) -

Tcust_id. title (Gorder_id:order (Order x PaY)))

That's not pretty. But here is a better idea (1971):
express queries in logic

{c | V(o,t,p) e Order 3 (0't,p’) « Order: (c,0’) « Pay}

Queries

Find ids of customers who buy all books:
Tlcust id (PaY) =
Tlcust id ((T[Cust_id(PaY) X T[title(Ol’der)) -

Tcust_id. title (Gorder_id:order (Order x PaY)))

That's not pretty. But here is a better idea (1971):
express queries in logic

{c | V(o,t,p) e Order 3 (0't,p’) « Order: (c,0’) « Pay}

This is first-order logic (FO).
Codd 1971: RA = FO.

History continued

Of course programmers don’t write logical sentences, they
need a programming syntax. Enters SQL.:

SELECT P.cust_id FROM P
WHERE NOT EXISTS
(SELECT * FROM Order O
WHERE NOT EXISTS
(SELECT * FROM Order O1
WHERE O1.title=0.title AND O1.order_id=P.order))

History continued

Of course programmers don’t write logical sentences, they
need a programming syntax. Enters SQL.:

SELECT P.cust id FROM P
WHERE NOT EXISTS _
(SELECT * FROM Order O VxF(x) = =dx =F(x)
WHERE NOT EXISTS
(SELECT * FROM Order O1
WHERE O1.title=0.title AND O1.order_id=P.order))

History continued

Of course programmers don’t write logical sentences, they
need a programming syntax. Enters SQL.:

SELECT P.cust_id FROM P

WHERE NOT EXISTS _
(SELECT * FROM Order O VxF(x) = =dx =F(x)

WHERE NOT EXISTS
(SELECT * FROM Order O1
WHERE 0O1.1itle=0.title AND O1.order_id=P.order))

ldea:
» Take FO and turn into into programming syntax.
* Then use RA to implement queries.

SQL development

- SQL has since become the dominant language for
relational databases

- Standards: SQL-86, SQL-89, SQL-92, SQL:1999,

SQL:2003, SQL:2008, SQL:2011, SQL:2016

- The latest standard is in 9 parts, will make you

$1000 poorer if you buy them all.
-+ But the core remains the same, essentially FO.

- And it is the main big data tool!

LANGUAGES, DATA PLATFORMS, ANALYTICS

sjuapuodsay Jo aibys

Data scientists’ favorite tools

%)
S
X X X X X X X
@) o @) @) @) @) o
N~ (o} LN <t mM (@) -

eljepels|
S5dS
1ad

(¥IN3) @onpaydely dnise|3 uozewy

9seqH
YoM

HIYSpay uozewy

31d

D

21IT0S

e|eas

10AIdJamod

++)

A

doopeH ayoedy
gqoSuon

VdA/olseg |ensip
elapnop

)leds

oAIH

S|001 sisAjeue UMOIZDLIOH
ed

a|eln

7050181504

ener

(uoyiAd) qipojdiey
1dunsener

nea|qel

19AJI9S DS LOSOIN
10|d33

Tool: language, data platform, analytics

uleal-)ds ‘Adids ‘Adwinu :uoyiAd

T0SAN
d
uoyiid
[92X3
10S

0%

% Of Jobs With Skill &

N
o\

Future data scientists favorite tools

The Most In-Demand Skills for Data Scientists in 2016

& CrowdFlower

&

8

o

o

(4]

55
50
45
40
20
1
1 IIIIIIII
Illl-

Hadoop Python Java Hive Mapreduce NoSQL Oracle Teradata Matlab Perl MySQL PostgreSQL Ruby HTML Stata

o

But do we understand it/

- Even the basic fragment, that stays the same in all
the Standards:

- does it have the power of RA? Does it have the
power of FO?

- |s there a formal semantics of it?

- Let's do a little quiz and see how well we know
the basics.

TASK: Relations R(A), S(A)
Compute R - S.

TASK: Relations R(A), S(A)
Compute R - S.

Every student will write:

select R.A from R where R.A not in (select S.A from S)

TASK: Relations R(A), S(A)
Compute R - S.

Every student will write:

select R.A from R where R.A not in (select S.A from S)

And they are taught it is equivalent to :

select R.A from R
where not exists (select S.A from S where S.A=R.A)

TASK: Relations R(A), S(A)
Compute R - S.

Every student will write:

select R.A from R where R.A not in (select S.A from S)

And they are taught it is equivalent to :

select R.A from R
where not exists (select S.A from S where S.A=R.A)

and that they can do it directly in SQL.:

select * from r except select * from s

S
TASK: Relations R(A), S(A)
1

Compute R - S.

null

null

Every student will write:

select R.A from R where R.A not in (select S.A from S)

And they are taught it is equivalent to :

select R.A from R
where not exists (select S.A from S where S.A=R.A)

and that they can do it directly in SQL.:

select * from r except select * from s

S Outputs:
TASK: Relations R(A), S(A) utputs:
1

Compute R - S.

null

null

Every student will write:

select R.A from R where R.A not in (select S.A from S)

And they are taught it is equivalent to :

select R.A from R
where not exists (select S.A from S where S.A=R.A)

and that they can do it directly in SQL.:

select * from r except select * from s

S Qutputs:

TASK: Relations R(A), S(A)
Compute R - S. 1

null

null

Every student will write:

=

select R.A from R where R.A not in (select S.A from S)

And they are taught it is equivalent to :

select R.A from R
where not exists (select S.A from S where S.A=R.A)

and that they can do it directly in SQL.:

select * from r except select * from s

S Qutputs:

TASK: Relations R(A), S(A)
Compute R - S. 1

null

null

Every student will write:

=

select R.A from R where R.A not in (select S.A from S)

And they are taught it is equivalent to :

1

null

select R.A from R
where not exists (select S.A from S where S.A=R.A)

and that they can do it directly in SQL.:

select * from r except select * from s

S Qutputs:

TASK: Relations R(A), S(A)
Compute R - S. 1

null

null

Every student will write:

=

select R.A from R where R.A not in (select S.A from S)

And they are taught it is equivalent to :

1

null

select R.A from R
where not exists (select S.A from S where S.A=R.A)

and that they can do it directly in SQL.:

select * from r except select * from s

An exam question that nicely
brings down the average grade

What is the output of these queries?

SELECT 1 FROM S

WHERE (null = ((null =
((null = ((null = null) is null))
is null)) is null)) is null

SELECT 1 FROM S

WHERE (null = ((null =
((null = ((null = null) is null))
is null)) is null))

An exam question that nicely
brings down the average grade

What is the output of these queries?

SELECT 1 FROM S

WHERE (null = ((null =
((null = ((null = null) is null)) 1
is null)) is null)) is null

SELECT 1 FROM S

WHERE (null = ((null =
((null = ((null = null) is null)) %
is null)) is null))

SQL vs Relational Algebra: attributes may
repeat
|
ECT R.A, RA FROM Ron [] gives [1]1

null null | null

.

=]
-

SQL vs Relational Algebra: attributes may
repeat
|
LECT R.A, RA FROM Ron ['] gives [1]1

null null | null

&

Q=S

Let's use It as a subquery:
@ =SELECT * FROM (Q) AS T

SQL vs Relational Algebra: attributes may
repeat
|
LECT R.A, RA FROM Ron ['] gives [1]1

null null | null

&

Q=S

Let's use It as a subquery:
@ =SELECT * FROM (Q) AS T

Output:
e Postgres: as above
e Oracle, MS SQL Server: compile-time error

SQL vs Relational Algebra: attributes may
repeat
|
LECT R.A, RA FROM Ron ['] gives [1]1

null null | null

&

Q=S

Let's use It as a subquery:
@ =SELECT * FROM (Q) AS T

Output:
e Postgres: as above
e Oracle, MS SQL Server: compile-time error

SELECT R.A FROM R WH.

&

R

&

EXISTS (@)

SQL vs Relational Algebra: attributes may
repeat
|
LECT R.A, RA FROM Ron ['] gives [1]1

null null | null

&

Q=S

Let's use It as a subquery:
@ =SELECT * FROM (Q) AS T

Output:
e Postgres: as above
e Oracle, MS SQL Server: compile-time error

SELECT R.A FROM R WH.

Answer: 1

null

&

R

&

EXISTS (@)

Why do we find these
questions difficult™

- Reason 1: there is no

- The Standard is rather vague, not written formally, and
different vendors interpret it differently.

- Reason 2: theory works with a . no nulls,

no duplicates.

- Under these assumptions several semantics exist
(1985 - 2017) but they do not model the real language.

It is much harder to deal with the real thing than with
theoretical abstractions

It is much harder to deal with the real thing than with
theoretical abstractions

Assume a spherical cow of uniform density.

Another example: Query equivalences

Another example: Query equivalences

Q1(x) :- T(x,y)

Q2(x) :-T

(

X,y), T(u,v)

In theory:
equivalent; on

SN P

1
3

return

1
3

Another example: Query equivalences

Q1(x) :- T(x,y)
Q2(x) :- T(x,y), T(u,v)

Now the same in SQL.:

In theory:
equivalent; on

SN P

1
3

return

1
3

Another example: Query equivalences

Q1(x) :- T(x,y)
Q2(x) :- T(x,y), T(u,v)

In theory:

Now the same in SQL.:

Q1 =85:

&

ECT R.A FROM R,

equivalent; on

SN P

1
3

returns

return

1
3

Another example: Query equivalences

._ - A B
Q1(x) :- T(X,y) In theory: eturn

SN P

Q2(x) :- T(x,y), T(u,v) equivalent; on ;

Now the same in SQL.:

ECT R.A FROM R returns

=]
-

Q1 =85:

ECT R1.A FROM R Rl, R R&

=
-

Q2 = S:

returns

1

The infamous NULL

- Comparisons with nulls, like 2 = NULL, result in truth value
unknown

- It then propagates: frue A unknown = unknown, ftrue v unknown
= true

- rules of propositional 3-valued logic of Kleene

- When condition is evaluated, only tuples for which it is frue are
returned

- false and unknown are treated the same

- |t's a weird logic and it is not the 3-valued predicate calculus!

The bottom line

-+ Many spherical cows out there but no real one.

-+ There are lots and lots of issues to address to give
proper semantics of SQL

+ None of the simplified semantics came even close.

- We do it for the basic fragment of SQL.:

- SELECT-FROM-WHERE without aggregation

+ but with pretty much everything else

Syntax

7:8 = TiAas N1, ..., T, aAs Ny, for 7= (T1,..., Tx), 8 = (N1, ..., Ny), k>0
a:B = tias Ny, ..., tm AS N for a = (t1,...,tm), B'= (N1,...,N,,), m >0
(QUERIES: CONDITIONS:
(Q = SELECT [DISTINCT]| o : 3 FROM T : 3 WHERE 0 6 = TRUE | FALSE | P(t1,..., tr),
| SELECT [DISTINCT| * FROM 7 : 3 WHERE 0 | ¢ IS [NOT| NULL
| Q (UNION | INTERSECT | EXCEPT) [ALL] Q) | ¢ [NOT] IN @ | EXISTS)

| 6 aND 6 | 6 OR 0 | NOT 6

Names: either simple (R, A) or composite (R.A)
Terms t: constants, nulls, or composite names

Predicates: anything you want on constants

Semantics: labels

tuple of names provided by the schema
((r) =4L4(Ty)---4(Ty,) for = (T1,...,Tk)

E(SELECT [DISTINCT| o : f3) _g

FROM T : 3 WHERE 0
{(SELECT [DISTINCT |+ FROM T : 3 WHERE 6) = {(7)

¢(Q1 (UNION | INTERSECT | EXCEPT) [ALL| Q2) = 4(Q1)

Semantics

[Q]b,n,x

Q: query

D: database

n. environment (values for composite hames)
X. Boolean switch to account for non-compositional nature of

SELECT * (to show where we are in the query)

Semantics of terms

emantics: queries

|

[Rlp.ne = R”

[[7' : 5]]D,77,$ = [[Tl]]D,n,O X+ X [[Tk;]]D,n,O for T = (Tl, e ,Tk)
(

FROM 7:0 | _ | v
& —d r | T Blomo N0lo.w =t A0 =n& b B)
WHERE 0 . ——
i T \ k times
SELECT o: /3 | / i FROM 7 : 8
FROM 7T :[3 = 4 l[a]]n/,...,[[a]]n// n =n&l(r:P), TEg |[WHERE 0 ﬂ
WHERE 0 | \ PN D,n,x
[SELECT * [seLEcT /(7:8):4(T)
FROM 7:0 = FROM T :
WHERE 0 | | WHERE 0 Do
[SELECT [SELECT cas N
FROM 7:0 — FROM 7:0 for arbitrary c € C and N € N
WHERE 0 I b | WHERE 0 Dot
SELECT DISTINCT « : 3’ | % _ . SELECT «: 3 | %
FROM T : 3 WHERE 0 an_ FROM T : 3 WHERE 0 Doz

Semantics: conditions

t if P([t1]n,- .., [tx]n) holds and [¢], # NULL for all i € {1,...,k}
[P(t,...,te)lpy = S £ if P([t1]n,- .-, [te]n) does not hold and [t;], # NuLL for all ¢ € {1,...,k}
u if [t;], = NULL for some i € {1,...,k}

[t s NULL] ., — t ?f [t]:, = NULL
f if [t], # NULL

[t s NOoT NULL]p,, = —[t IS NULL]p,y,

[(t1,.. . tn) = (), t)]Dm = /\ [t: = t:]p.m [(t1, .. tn) # (t1, ..., t)]Dm = \/ [t: # tilD.m

t if3Ire[Qpnost [t=7F]p,=t
[t INQ]pn, = f ifVFe[Q]pnost [t=7]p,="F
u if 47 € [Q]p.yost. [t=7lp,=tand 37 € [Q]pno s.t. [t =7]p, #f
-t N Q] b,y

t it [[Q]]Dm,l #* &
f if [Q]py1=2

[t NoT IN Q] D,

[Ex1STS QD" =

[TRUE]D,, =t [01 28D 02]p .y, = [01] D,y A [02] Dy [NoT O] p,, = —[0]D.n
[[FALSE]]DJ7 =f [[91 OR 62]]D,77 = [[(91]]D,77 V H@Q]]D’n

TRUTH TABLES:

Semantics: operations

[Q1 UNION ALL Q2]|D,n, = [Q1] Dm0 U [Q2] D50

[@1 INTERSECT ALL Q2| Do = [Q1]D,n,0 N [@2]D,n,0

[@1 EXCEPT ALL Q2] D,n,» = [@1]D,n,0 — [@2] Dm0
[Q1 UNION Q2] D,y = €([Q1 UNION ALL Q2]p,n,)

[Q1 INTERSECT Q2] D,y = €([Q1 INTERSECT ALL Q2]p,y,2)

[Q1 EXCEPT Q2]p,n= = £([Q1]D.n.0) — [Q2]D.7.0

Bag interpretation of operations; € is duplicate elimination

| ooks simple, no”

- |t does not. Such basic things as variable binding
changed several times till we got them right.

- The meaning of the new environment:

FROM 7. _ _ _ p 7
|lWHERE ! Bﬂan: { r,..., T T €k [[Tiﬁ]]p’n’o, [[QHD,n’ = t, N :n@ﬁ(Tﬁ) }

- In 71, unbind every name that occurs among labels
of the FROM clause

- then bind non-repeated names among those to
values taken from record r

How do we know we got it right?

- Since the Standard is rather vague, there is only
one way — experiments.

- But what kind of benchmark can we use?
- For performance studies there are standard

benchmarks like . But they won't work for us:
not enough queries.

Experimental Validation

- Benchmarks have rather few queries (22 in TPC-H). Validating on
22 queries is not a good evidence.

- But we can look at benchmarks, and then generate lots of queries
that look the same.

- In TPC-H:

- 8 tables,
- maximum nesting depth = 3,
»+ average number of tables per query = 3.2,

- at most 8 conditions in WHERE (except two queries)

Validation: results

- Small adjustments of the Standard semantics (for
Postgres and Oracle)

- Random query generator

- Naive implementation of the semantics

- Finally: experiments on 100,000 random queries

Validation: results

- Small adjustments of the Standard semantics (for
Postgres and Oracle)

- Random query generator
- Naive implementation of the semantics

- Finally: experiments on 100,000 random queries

* Yes, we got it right!

What can we do with this”?

+ Equivalence of basic SQL and Relational Algebra:
formally proved for the first time.

- 3-valued logic of SQL vs the usual Boolean logic: is
there any difference?

Basic SQL = Relational Algebra

- We formally prove SQL = Relational Algebra (RA)

- with nulls, subqueries, bags, all there is. And
RA has to be defined properly too, to use bags
and SQL's 3-valued logic.

- a small caveat: in RA, attributes cannot repeat.
So the equality is wrt queries that do not return

repeated attributes.

3-valued logic of nulls

- From the early SQL days and database textbooks:

- But 3-valued logic is not the first thing you think of
as a logician.

- And it makes sense to think as a logician: after all,
the core of SQL is claimed to be first-order logic in a

different syntax.

What would a logician do?

What would a logician do?

» First Order Logic (FO)
- domain has usual values and NULL

equality: NULL = NULL but NULL # 5 efc
- Boolean logic rules for A, v, —

- Quantifiers: Vv is conjunction, 3 is disjunction

What did SQL do?

What did SQL do?

- 3-valued FO (a textbook version)

- domain has usual values and NULL

» comparisons with NULL result in unknown

+ Kleene logic rules for A, v, —

- Quantifiers: Vv is conjunction, 3 is disjunction

What did SQL do?

- 3-valued FO (a textbook version)
- domain has usual values and NULL

» comparisons with NULL result in unknown

+ Kleene logic rules for A, v, —

- Quantifiers: Vv is conjunction, 3 is disjunction

- Seemingly more expressive.

What did SQL do?

- 3-valued FO (a textbook version)
- domain has usual values and NULL

» comparisons with NULL result in unknown

+ Kleene logic rules for A, v, —

- Quantifiers: Vv is conjunction, 3 is disjunction

- Seemingly more expressive.

- But does it correspond to reality?

SQL logic is 2-valued or 3-valued:
It's a mix

- Conditions in WHERE are evaluated under 3-valued
logic. But then only those evaluated to true matter.

- Studied before only at the level of propositional logic.

- In 1939, Russian logician Bochvar wanted to give a
formal treatment of logical paradoxes. He needed to
assert that something is true, and introduced a new

connective: Tp means that p is true.

- Amazingly, 40 years later SQL adopted the same idea.

What did SQL really do?

» 3-valued FO with 1:

- domain has usual values and NULL

» comparisons with NULL result in unknown

- Kleene logic rules for A, v, —
- Quantifiers: Vv is conjunction, 3 is disjunction

- Add 7 with the semantics

_ frue, if @ is true
¢ false, if ¢ is false or unknown

What IS the logic of SQL?

What IS the logic of SQL?

- We have:
» logician’s 2-valued FO
»+ 3-valued FO (Kleene logic)

-+ 3-valued FO + Bochvar’s assertion (SQL logic)

What IS the logic of SQL?

- We have:
» logician’s 2-valued FO
- 3-valued FO (Kleene logic)
-+ 3-valued FO + Bochvar’s assertion (SQL logic)

- AND THEY ARE ALL THE SAME!

THEOREM: tcan be expressed in 3-valued FO.

3-valued FO = 3-valued FO with 1

THEOREM: For every formula ¢ of 3-valued FO, ‘
there is a formula yp of the usual 2-valued FO
such that

¢ is frue < yis lrue

B —————

THEOREM: tcan be expressed in 3-valued FO.

3-valued FO = 3-valued FO with 1

THEOREM: For every formula ¢ of 3-valued FO, *
there is a formula yp of the usual 2-valued FO
such that

¢ is tfrue < yis true

Translations work at the level of SQL too!

2-valued SQL

|ldea — 3 simultaneous translations:

- conditions P - Pt and P!

+ Queries Q - Q'

Ptand P are Boolean conditions: Pt/ P! is true
Iff P under 3-valued logic is true / false.

In Q" we simply replace P by Pt

2-valued SQL: translation

f

P®)* = P P(t1,..., tr)’ = NOT P(ti,..., t,) AND £ IS NOT NULL
(Ex1sTS Q)° = EXISTS Q' (ex1sTs Q)" = NoT EX1STS Q'
(01 A O2)Y = 0% A6 (01 A0 = 0] V65
01V 05)F = 6% v 65 (01 Vv 02)" = 0] A 64
(_|8)t _ 9f ()f _ et
(t Is NuLL)" = t IS NULL (IS NULL)f — ¢ IS NOT NULL
TINQ) = tINQ ((ts,- .-,) IN Q)f — NOT EXISTS (SELECT » FROM Q)" As N (Aq, ..., A,) WHERE

(t1 IS NULL OR A; IS NULLOR t; = N.A;) AND - - -
.+ AND (¢n IS NULL OR A, IS NULL OR t, = N.A,))

Note: a lot of disjunctions with IS NULL conditions

Shall we switch to 2-valued SQL?

+ Not so fast perhaps. Two reasons:

- all the legacy code that uses 3-values

» using 2 truth values introduces many new
. And DBMSs don't like disjunctions!

Shall we switch to 2-valued SQL?

+ Not so fast perhaps. Two reasons:
- all the legacy code that uses 3-values

» using 2 truth values introduces many new
. And DBMSs don't like disjunctions!

- As to why, this comment line in Postgres optimizer code
sheds some light:

Shall we switch to 2-valued SQL?

+ Not so fast perhaps. Two reasons:
- all the legacy code that uses 3-values

» using 2 truth values introduces many new
. And DBMSs don't like disjunctions!

- As to why, this comment line in Postgres optimizer code
sheds some light:

- /" we stop as soon as we hit a non-AND item */

Questions?

